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LElTER TO THE EDITOR 

Stochastic equations for fields in complex manifolds 

Z Habat 
Research Centre Bielefeld-Bochum-Stochastics, Bielefeld University, D-4800 Bielefeld, 
FRG 

Received 25 February 1985 

Abstract. The construction of the (Euclidean) quantum mechanics on a manifold are 
generalised to two-dimensional models of quantum field theory. Partial differential 
equations for Euclidean fields are obtained, which are random perturbations of instanton 
equations. 

Stochastic equations have been derived recently [ I ,  21 (see also earlier papers [3-51) 
for some models of quantum field theory. In this letter stochastic equations are 
obtained for a larger class of two-dimensional models (detailed study of these equations 
as well as stochastic equations in higher dimensions in models with instantons will 
appear later [ 6 ] ) .  The stochastic equations on a finite-dimensional manifold constitute 
a classical part of probability [7]. We derive stochastic equations for fields, treated as 
coordinates of an infinitely dimensional manifold, through a direct generalisation of 
the finite-dimensional case (see also [5, 81). 

( 1 )  There is a direct relation between the Hamiltonian H as a second-order elliptic 
differential operator defined on a Riemannian manifold M and the stochastic process 
5 ( t )  on M 

(e-fHf)(x) = Jw(5x(t))l (1) 

8 = P ( t )  + 7i. (2) 

7ir = ep,(77)b“ +$rr(77) (3) 

where tx( t )  is a solution (with the initial condition t ( 0 )  = x )  of the stochastic equation 

1) is the Brownian motion on M [7] (7i  = d.rl/dt), which fulfils the equation 

here epa is the tetrad (e,,e,, = g,”), r is the Christoffel symbol and 6 is the white 
noise, i.e. 

~[6 ‘ ( r ) t ; ” ( t ’ ) ]  = s ” s ( ~  - t ) .  (4) 
If P =0, then Ho= -$AM, where AM is the Laplace-Beltrami operator on M. The 
formal path-space measure for Ho in ( 1 )  has the form (it makes sense on the lattice) 

t On leave of absence from Institute of Theoretical Physics, University of Wroclaw, Poland. Supported by 
Stiftung Volkswagenwerk. 
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Now, the functional measure corresponding to the process 5 (2) can be expressed by 
po (this is the Cameron-Martin-Girsanov formula [7]; see also [9]): 

The Feynman-Kac formula forthe potential U = f(V V)2 -4A V (then p = - V V) follows 
from (6) and from the Ito formula f= 8 3 ”  +$A$ 

A formal derivation of the CMG formula (6) will explain its meaning and eventual 
approximation scheme for computations 

=[ d[db’exp( -&I b ” F ( { ) a ( ~ - @ - i ( b ’ ) ) ) .  (8) 

Hence, the expressions (7) and (8) coincide. 

C fulfilling the equation 
(2) As the simplest example consider a process cp = q, + icp’ on the complex plane 

+ =  V(cp)+d (9) 

where b = b, +ib2 is the complex noise and (by assumption) V(cp) is a holomorphic 
function. It can be seen from the formula ( 6 )  that V and e’“V describe the same 
process, because b is invariant under such rotations. 

Next, consider the Kahler manifolds. For these complex manifolds the Christoffel 
symbol r in (3) vanishes in complex coordinates. So, only the tetrad remains in the 
stochastic equation. As an example, the CP” manifold [ 101 in the complex coordinates 
( w p ,  w Q )  has the metric 
- 

g , , ( w )  = e , , (w)e , , (w)  =$( 1 + w ~ ) - ’ ( i 3 ~ ~  1 + W W )  - *,wy)  

e F a ( w )  = $ ( I  + W W ) ” ~ ( S ~ ”  - w p W a / w W ) + t ( l  + W W ) W ~ P ~ / W W  

(10) 

( 1 1 )  

where 

and wW = X w 5 V .  
The stochastic equation (3) takes the form 

wa = e , , (w)b” .  (12) 

CP” is a compact manifold; therefore the Hamiltonian has a discrete spectrum and 
the correlation functions of w, show an exponential decay in time. 
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(3) A random field [ ( t , x ) = [ , ( x )  can be considered as a random curve on a 
manifold 9 ( R ,  M) of maps 5:  R + M, i.e. as a stochastic process in 9. 9 is a 
Riemannian Hilbert manifold modelled on L 2 ( R )  [ 113 with the scalar product for 
v E ( T 9 ) q  (the tangent space at q E 9) defined by 

where ( , ) is thz Riemannian structure in M. 

equations) with the two-dimensional white noise b;( t, x)  
We could consider (3) as a stochastic equation in 9 (see [8] for a theory of such 

E [  b( t ,  x)6( t ' ,  x')] = 6(  r - t ' )6(  x - x'). 

However, such an equation would not be Euclidean invariant. Equation (3) will be 
modified by a proper choice of the drift term p in equation (2). We determine p from 
the following rules: (i) the solutions of the modified equation should stay on M;  (ii) 
the stochastic equation should remain invariant under space translations x + x + a ; 
and (iii) the exponential decay in time of expectation values of functionals invariant 
under space translations should be preserved. 

The requirements (i)-(iii) will be fulfilled if the drift p is equal to the Killing vector 
K corresponding to the translational isometry of the Riemannian metric (13) (the role 
of a Killing vector in a related context has been emphasised in [12] and [13]). It is 
easy to see that the Killing vector K for E C((  U, U') = 5 d x m v ' ( x ) )  has the form 
to a constant) K = - id,cp. With such a choice of p, equation (9) reads (a, = a, + ia,) 

- 
& =  V(cp)+b. (14) 

This is the equation discussed in [ l ]  and [2]. Equation (14) is obviously invariant 
under translations z + z + c. Under Euclidean rotations z + e'"z, hence in (14) V+ e'"V 
and b + e-'"b. As mentioned before solutions of (14) are invariant under such transfor- 
mations. 

For the CP" model in the complex coordinates K" = -id,w". Hence, (2) with the 
drift added to (12) has the form 

S,wp = e a , ( w ) b 4 .  (15) 

This equation is explicitly invariant under the Euclidean group. Moreover, it is 
invariant under arbitrary holomorphic transformations 5 = { ( z ) ,  because the white 
noise 6 is invariant under the transformation 6 ( z )  + d l / a z  b ( 5 ) .  Note that if the noise 
b is switched off (there is (h)1'2 in front of b ) ,  then (15) goes over into the instanton 
equation. 

(4) Consider now an Abelian Hig&s model. The configuration space 9 of the Higgs 
model can be considered as a set (A, 6 )  of equivalence classes with respect to the 
gauge transformations. The metric (13) is invariant under the translation cp(x) + 
exp(iAl(x)dx) cp(x+dx) of the fibre. The generator K of this isometry is equal to 
-i(d,-iA,)cp. In the temporal gauge the configuration space 9 is described by AI 
and cp. We write down the stochastic equation in this gauge according to the rules 
(i)-(iii). The stochastic equation transformed to an arbitrary gauge has the form 

- .  
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The Lorentz gauge can be imposed as an auxiliary stochastic equation 

dtAo+axAl = Go. 

Then, (16) can be expressed in a complex form 

;,Q = iAq + b d,A = i V(lcp12)+ 4 (17) 

whered,=d,-id,, A = A o + i A l  and v = v o + i v l .  

as a scalar and A as a vector under rotations. With 
Equations (16) and (17) are invariant under the Euclidean group if Q transforms 

V(lQI’) = 1 - IQI2 (18) 

equations (16), without noise, coincide with the Bogomoinyi equations [I41 for vortices. 
(5) Let us compute the exponential factor in the CMG ( 6 )  describing a change of 

the functional measure caused by the addition of a drift p. For Q E C (equation (9)) 
we find 

5 d t  dxp,pp = a,cpa,cp 
2 5 -  

- I d t  dxp”ePaba = i -a,cpb) = 21m dt  dxa,cp(G- V ( Q ) ) .  I 
This is a surface term. 

For the CP“ model we get 

1 1 dt  dxp,p’ = dt dxg,,( w)a,w@-” 
2 

Hence, the stochastic integral in equation ( 6 )  (the term with the time derivative) is 
equal to the topological charge [lo], whereas the term p’ adds to the Lagrangian in ( 5 ) .  

We find from equations ( 6 ) ,  (17) and (18) analogous formulae for the Higgs model 

L = aF,,F,, + f(d,A,)2 + -V,Q + f( 1 - IQ 1 2 )  

(1 - l ( P ) 2 ) - & , u & a b V r ( P a V u ( P b .  

(6) The Markov property and invariance under the Euclidean group of the 
Euclidean fields are sufficient for a construction of relativistic quantum fields [ 151. 
Our equations are Euclidean invariant and the Markov property is a direct consequence 
of the stochastic equations [7]. Hence, we expect that the stochastic equations determine 
a local relativistic quantum field. In order to describe this field in terms of a Lagrangian 
a relation between the stochastic equation and the functional measure has to be 
established. For a stochastic process this relation is determined by the CMG formula 
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(6). The stochastic equations (14)-( 16) for random fields need regularisation to be 
well defined. After the regularisation the relation between the stochastic equation and 
the functional measure can be found from equations (7) and (8). Consider for example 
equation (14) on the lattice (with lattice spacing 6) 

- 
aPp +ia:p - ~ ( c p )  = 6 

where as is a lattice derivative and 6 are Gaussian random variables independent at 
every point of the lattice. Then, equation ( 7 )  is well defined on the lattice. If we 
change the variables from 6 to cp in equation ( 7 ) ,  then we get the Yukawa model of 
[ l]  and [2] on the lattice. The spinor determinant will come out as the Jacobian of 
the transformation cp -P 6. We could also use a continuous time and the space lattice 
(or any other space regularisation). In such a regularisation the Hamiltonian ( 1 )  is 
well defined. Then, the stochastic equations (2) and ( 3 )  are treated by the standard 
probability theory [7]. The formula (6) becomes the well known Cameron-Martin- 
Girsanov formula with bdt in the (regularised) topological charge being the Ito 
differential. In such a case the spinor determinant does not appear explicitly in the 
functional measure (but the stochastic Ito integral in equation (6) is in fact equal to 
the determinant in this regularisation: it is known [ 161 that the spinor determinant 
with free boundary conditions adds only a local term to the Lagrangian in quantum 
mechanics). 

If we put equations ( 15) and (17) on a spacetime lattice, then we get also a spinor 
determinant in the functional measure in addition to the bosonic Lagrangian. From 
equation (15) we get det 0, where D is the covariant derivative along the chiral field. 
In the Higgs model (17) there will be a spinor determinant describing the minimal 
coupling of the gauge field to a complex spinor and the Higgs field coupled to the 
complex as well as to a real spinor field. There remains to study the continuum limit 
of such a determinant in order to determine rigorously the functional measure corre- 
sponding to the stochastic equation in the continuum. This problem is now under 
investigation. 

I wish to express my gratitude to Professors S Albeverio, Ph Blanchard and L Streit 
for their invitation to the BiBoS Research Centre at Bielefeld University. 
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